论文标题

使用Gaia和红外调查对3D银河系进行建模

Modeling the 3D Milky Way using Machine Learning with Gaia and infrared surveys

论文作者

Cornu, David

论文摘要

我们的内部观点很难观察到我们的家园,即银河系(MW)。包含约16亿星距离的Gaia调查是MW结构的新旗舰,可以与其他大型红外(IR)调查结合使用,以提供银河平面内前所未有的长距离测量。同时,过去二十年来,机器学习(ML)方法的使用也越来越多,这些方法也越来越多地用于天文学。 我将首先描述ML分类器的构建,以改善针对年轻恒星对象(YSO)候选者的广泛采用的分类方案。恒星出生在密集的星际环境中,最年轻的人没有时间远离其地层位置,这是对星际培养基最密集的结构的探测。 YSO识别和Gaia距离测量值的组合可以使3D中密集的云结构重建。我们的ML分类器基于人工神经网络(ANN),并使用Spitzer Space望远镜中的IR数据来自动从给定的示例自动重建YSO分类。 在第二部分中,我将提出一种基于卷积神经网络(CNN)重建MW的3D灭绝分布的新方法。使用大型银河系模型BesançonGalaxy模型对CNN进行了训练,并通过将模型的结果与观察到的数据进行比较来推断灭绝距离分布。该方法能够以100 pc的形式分辨率解决最大10 kpc的遥远结构,并且被发现能够在无需交叉匹配的情况下组合2MASS和GAIA数据集。该组合预测的结果令人鼓舞,并为将来的全银河平面预测提供了较大组合的可能性。

The observation of our home galaxy, the Milky Way (MW), is made difficult by our internal viewpoint. The Gaia survey that contains around 1.6 billion star distances is the new flagship of MW structure and can be combined with other large-scale infrared (IR) surveys to provide unprecedented long distance measurements inside the Galactic plane. Concurrently, the past two decades have seen an explosion of the use of Machine Learning (ML) methods that are also increasingly employed in astronomy. I will first describe the construction of a ML classifier to improve a widely adopted classification scheme for Young Stellar Object (YSO) candidates. Stars being born in dense interstellar environment, the youngest ones that did not had time to move away from their formation location are a probe of the densest structures of the interstellar medium. The combination of YSO identification and Gaia distance measurements then enables the reconstruction of dense cloud structures in 3D. Our ML classifier is based on Artificial Neural Networks (ANN) and uses IR data from the Spitzer space telescope to reconstruct the YSO classification automatically from given examples. In a second part, I will propose a new method for reconstructing the 3D extinction distribution of the MW based on Convolutional Neural Networks (CNN). The CNN is trained using a large-scale Galactic model, the Besançon Galaxy Model, and learns to infer the extinction distance distribution by comparing results of the model with observed data. This method is able to resolve distant structures up to 10 kpc with a formal resolution of 100 pc, and was found to be capable of combining 2MASS and Gaia datasets without the necessity of a cross match. The results from this combined prediction are encouraging and open the possibility for future full Galactic plane prediction using a larger combination of various datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源