论文标题

一致的爱因斯坦 - 卡丹方程与扭转外部物质的扭转

Consistent solution of Einstein-Cartan equations with torsion outside matter

论文作者

Morawetz, Klaus

论文摘要

考虑了扭转一阶动作中的爱因斯坦 - 卡丹方程。从Belinfante-Rosenfeld方程式中,特殊一致性条件是针对与度量的扭转参数得出的。内部物质是由旋转给出的,这导致了扩展的Oppenhaimer-Volkov方程。除了无扭转的施瓦茨柴尔德(Schwarzschild)之外,还发现了第二个解决方案,其扭转完全由公制和反之亦然确定。该解决方案被证明具有非球形来源,其相对于一致性的独特性已被证明。在不同的坐标系中讨论了异常的特性,在不同的坐标系统中,宇宙常数假定弗里德曼参数在Friedman-Lama-Lama-Robertson-Walker-Walker宇宙中的作用。在可能的地方指定参数。提出了转换,以探索和映射扩展和缩小宇宙的区域,以符合静态指标的形式。自动平行方程被精确求解,并将其与测量运动进行比较。 Weyl Tensor揭示了此处发现的解决方案是Petrov-D类型的。

The Einstein-Cartan equations in first-order action of torsion are considered. From Belinfante-Rosenfeld equation special consistence conditions are derived for the torsion parameters relating them to the metric. Inside matter the torsion is given by the spin which leads to an extended Oppenhaimer-Volkov equation. Outside matter a second solution is found besides the torsion-free Schwarzschild one with the torsion completely determined by the metric and vice-versa. This solution is shown to be of non-spherical origin and its uniqueness with respect to the consistence is demonstrated. Unusual properties are discussed in different coordinate systems where the cosmological constant assumes the role of the Friedman parameter in Friedman-Lamaître-Robertson-Walker cosmoses. Parameters are specified where wormholes are possible. Transformations are presented to explore and map regions of expanding and contracting universes to the form of static metrics. The autoparallel equations are solved exactly and compared with geodesic motion. The Weyl tensor reveals that the here found solution is of Petrov-D type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源