论文标题

人格特征检测使用包装的SVM通过BERT单词嵌入合奏

Personality Trait Detection Using Bagged SVM over BERT Word Embedding Ensembles

论文作者

Kazameini, Amirmohammad, Fatehi, Samin, Mehta, Yash, Eetemadi, Sauleh, Cambria, Erik

论文摘要

最近,人格特质的自动预测引起了人们的关注,并已成为情感计算领域中的热门话题。在这项工作中,我们提出了一种基于深度学习的新方法,以从文本中检测自动化。我们利用自然语言理解中艺术的进步状态,即BERT语言模型从文本数据中提取上下文化的单词嵌入,以进行自动化作者个性检测。我们的主要目标是开发一个计算高效,高性能的人格预测模型,该模型可以由大量人轻松使用,而无需获得庞大的计算资源。考虑到这种意识形态,我们进行了广泛的实验,使我们开发了一种新颖的模型,该模型将上下文化的嵌入以及心理语言特征ToA Bagged-SVM分类器进行人格特质预测。我们的模型的表现使先前的艺术状态远高于1.04%,同时,训练的计算有效效率更高。我们报告了有关人格检测的著名黄金标准论文数据集的结果。

Recently, the automatic prediction of personality traits has received increasing attention and has emerged as a hot topic within the field of affective computing. In this work, we present a novel deep learning-based approach for automated personality detection from text. We leverage state of the art advances in natural language understanding, namely the BERT language model to extract contextualized word embeddings from textual data for automated author personality detection. Our primary goal is to develop a computationally efficient, high-performance personality prediction model which can be easily used by a large number of people without access to huge computation resources. Our extensive experiments with this ideology in mind, led us to develop a novel model which feeds contextualized embeddings along with psycholinguistic features toa Bagged-SVM classifier for personality trait prediction. Our model outperforms the previous state of the art by 1.04% and, at the same time is significantly more computationally efficient to train. We report our results on the famous gold standard Essays dataset for personality detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源