论文标题
Nemchinov-Dyson溶液的二维轴对称不可压缩流动方程
Nemchinov-Dyson Solutions of the Two-Dimensional Axisymmetric Inviscid Compressible Flow Equations
论文作者
论文摘要
我们研究了轴对称坐标中的二维($ 2 $ d)无粘性压缩流动方程,该方程受到理想气体方程(EOS)的约束。从假设$ 2 $ d速度字段在每个相应的空间坐标中是可分开的,我们继续得出一个无限的椭圆形或双曲线,均匀扩展或收缩````clos Cloud)''解决方案了。构建属于该家族的特定示例解决方案取决于非线性,耦合,二阶普通微分方程系统的解决方案,以及附加物理过程的处方(例如,均匀的温度或均匀的熵流)。这些解决方案的物理和计算含义与定量代码验证或模型资格研究有关。
We investigate the two-dimensional ($2$D) inviscid compressible flow equations in axisymmetric coordinates, constrained by an ideal gas equation of state (EOS). Beginning with the assumption that the $2$D velocity field is space-time separable and linearly variable in each corresponding spatial coordinate, we proceed to derive an infinite family of elliptic or hyperbolic, uniformly expanding or contracting ``gas cloud'' solutions. Construction of specific example solutions belonging to this family is dependent on the solution of a system of nonlinear, coupled, second-order ordinary differential equations, and the prescription of an additional physical process of interest (e.g., uniform temperature or uniform entropy flow). The physical and computational implications of these solutions as pertaining to quantitative code verification or model qualification studies are discussed in some detail.