论文标题
具有时间逻辑目标的图表上的诱饵分配游戏
Decoy Allocation Games on Graphs with Temporal Logic Objectives
论文作者
论文摘要
我们研究一类游戏,其中对手(攻击者)要满足线性时间逻辑中指定的复杂任务,而后卫是防止对手实现其目标。欺骗性的防御者除了防御行动外还可以分配诱饵,以造成攻击者的虚假信息。因此,我们专注于共同综合诱饵放置策略的问题和欺骗性的防御策略,从而最大程度地利用了攻击者有关诱饵位置的不完整信息。我们在具有时间逻辑目标的图表上引入了一个模型,以捕获与非对称信息的这种对抗性相互作用。使用HyperGame模型,我们分析了给定的诱饵放置的有效性,该诱饵位置通过一组欺骗性的获胜状态进行了量化,因为在该状态下,防守者可以防止攻击者满足攻击目标,因为其有关诱饵位置的不完整信息。然后,我们研究了如何放置诱饵,以最大化辩护人的欺骗性获胜地区。考虑到所有可能的诱饵分配策略的较大搜索空间,我们从形式方法中结合了构图合成的想法,并表明诱饵分配问题类别中的目标函数是单调和不稳定的。我们得出了足够的条件,在这些条件下,诱饵分配问题的目标函数分别是下型或超模型的。我们表明,可以通过迭代地组成诱饵子集的超级游戏解决方案以及给定单个诱饵的HyperGame解决方案来有效地计算出最佳分配。我们使用一个运行示例来说明所提出的方法。
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in addition to defense actions, to create disinformation for the attacker. Thus, we focus on the problem of jointly synthesizing a decoy placement strategy and a deceptive defense strategy that maximally exploits the incomplete information the attacker about the decoy locations. We introduce a model of hypergames on graphs with temporal logic objectives to capture such adversarial interactions with asymmetric information. Using the hypergame model, we analyze the effectiveness of a given decoy placement, quantified by the set of deceptive winning states where the defender can prevent the attacker from satisfying the attack objective given its incomplete information about decoy locations. Then, we investigate how to place decoys to maximize the defender's deceptive winning region. Considering the large search space for all possible decoy allocation strategies, we incorporate the idea of compositional synthesis from formal methods and show that the objective function in the class of decoy allocation problem is monotone and non-decreasing. We derive the sufficient conditions under which the objective function for the decoy allocation problem is submodular, or supermodular, respectively. We show a sub-optimal allocation can be efficiently computed by iteratively composing the solutions of hypergames with a subset of decoys and the solution of a hypergame given a single decoy. We use a running example to illustrate the proposed method.