论文标题
关于结浮子同源性地理问题的注释
A note on a Geography problem in knot Floer homology
论文作者
论文摘要
我们证明,在次要亚历山大的分级中,某种类结的结浮子同源性是非平凡的。这给出了鲍德温和维拉 - 维克提出的问题的部分肯定答案,该问题询问$ s^3 $中所有非平凡结是否相同。
We prove that knot Floer homology of a certain class of knots is non-trivial in next-to-top Alexander grading. This gives a partial affirmative answer to a question posed by Baldwin and Vela-Vick which asks if the same is true for all non-trivial knots in $S^3$.