论文标题
端到端可区分分子力学力场构建
End-to-End Differentiable Molecular Mechanics Force Field Construction
论文作者
论文摘要
长期以来,分子力学(MM)势一直是计算化学的主力。利用准确性和速度,这些功能形式可以在生物分子建模和药物发现中的各种应用中找到使用,从快速虚拟筛选到详细的自由能计算。传统上,MM电位依赖于人类策划,僵化且易于扩展的离散化学感知规则或将参数应用于小分子或生物聚合物,因此很难优化类型和参数以适合量子化学或物理特性数据。在这里,我们提出了一种替代方法,该方法使用图神经网络感知化学环境,生成连续的原子嵌入,可以使用不变性的层来预测价和非键参数。由于所有阶段都是由平滑的神经功能构建的,因此相对于模型参数,整个过程都是模块化的,并且端到端可区分,从而使新的力场很容易构造,扩展并应用于任意分子。我们表明,这种方法不仅表达足以再现遗产原子类型,而且可以学会准确地再现和扩展现有的分子力学力场。经过任意损失函数训练,它可以直接从量子化学计算中构建全新的力场,自符合生物聚合物和小分子,比传统的原子或参数键入方案具有优越的保真度。当在使用肽数据集的相同量子化学小分子数据集上训练用于对OpenFF-1.2.0进行参数化的小分子力场进行参数化时,所得的ESPALOMA模型在计算流行基础标记集的相对炼金学自由能计算中相对于相对炼金学的能量计算显示出了较高的精度。
Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular modeling and drug discovery, from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules or applying parameters to small molecules or biopolymers, making it difficult to optimize both types and parameters to fit quantum chemical or physical property data. Here, we propose an alternative approach that uses graph neural networks to perceive chemical environments, producing continuous atom embeddings from which valence and nonbonded parameters can be predicted using invariance-preserving layers. Since all stages are built from smooth neural functions, the entire process is modular and end-to-end differentiable with respect to model parameters, allowing new force fields to be easily constructed, extended, and applied to arbitrary molecules. We show that this approach is not only sufficiently expressive to reproduce legacy atom types, but that it can learn to accurately reproduce and extend existing molecular mechanics force fields. Trained with arbitrary loss functions, it can construct entirely new force fields self-consistently applicable to both biopolymers and small molecules directly from quantum chemical calculations, with superior fidelity than traditional atom or parameter typing schemes. When trained on the same quantum chemical small molecule dataset used to parameterize the openff-1.2.0 small molecule force field augmented with a peptide dataset, the resulting espaloma model shows superior accuracy vis-à-vis experiments in computing relative alchemical free energy calculations for a popular benchmark set.