论文标题
弱Lefschetz属性的分类,用于几乎由一般线性形式均匀产生的完整交叉点
A classification of the weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms
论文作者
论文摘要
我们使用Macaulay的反系统来研究希尔伯特系列,以几乎由一般线性形式的均匀幂产生的几乎完整的交叉点。这使我们能够为这些代数的弱Lefschetz特性提供分类,并解决了Migliore,Miró-Roig和Nagel的猜想。
We use Macaulay's inverse system to study the Hilbert series for almost complete intersections generated by uniform powers of general linear forms. This allows us to give a classification of the Weak Lefschetz property for these algebras, settling a conjecture by Migliore, Miró-Roig, and Nagel.