论文标题

通过损失功能金属锻炼有效正规化

Effective Regularization Through Loss-Function Metalearning

论文作者

Gonzalez, Santiago, Qiu, Xin, Miikkulainen, Risto

论文摘要

进化计算可用于优化神经网络体系结构的几个不同方面。例如,Taylorglo方法发现了新颖的自定义损失功能,从而提高了性能,更快的训练和改进的数据利用率。一个可能的原因是,这种功能会阻止过度拟合,从而导致有效的正则化。从理论上讲,本文证明了Taylorglo的确如此。学习规则的分解表明,进化的损失函数平衡了两个因素:朝零错误的拉力,并推开它以避免过度拟合。这是一个一般原则,也可以用来理解其他正则化技术(如本文所示,用于标签平滑)。理论分析会导致一个约束,可以在实践中找到更有效的损失功能。该机制还导致网络更强大(如本文所示,具有对抗性输入)。因此,本文的分析构成了理解正则化的第一步,并证明了进化神经结构搜索的力量。

Evolutionary computation can be used to optimize several different aspects of neural network architectures. For instance, the TaylorGLO method discovers novel, customized loss functions, resulting in improved performance, faster training, and improved data utilization. A likely reason is that such functions discourage overfitting, leading to effective regularization. This paper demonstrates theoretically that this is indeed the case for TaylorGLO. Learning rule decomposition reveals that evolved loss functions balance two factors: the pull toward zero error, and a push away from it to avoid overfitting. This is a general principle that may be used to understand other regularization techniques as well (as demonstrated in this paper for label smoothing). The theoretical analysis leads to a constraint that can be utilized to find more effective loss functions in practice; the mechanism also results in networks that are more robust (as demonstrated in this paper with adversarial inputs). The analysis in this paper thus constitutes a first step towards understanding regularization, and demonstrates the power of evolutionary neural architecture search in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源