论文标题
通过第三代重力波检测器推断出恒星崩溃的物理特性
Inferring physical properties of stellar collapse by third-generation gravitational-wave detectors
论文作者
论文摘要
银河系循环超新星是引力波的可能来源。我们研究了引力波观测值从辐射的重力波中提取塌陷祖细胞的性能的能力。我们使用超新星的模拟来探索各种祖细胞核心旋转速率和状态的核方程,并检查当前和将来的观测值使用重力波参数估计来确定这些特性的能力。我们使用模拟目录的主成分分析来确定波形的主要特征,并在波形的测量属性和祖细胞的物理性质之间创建图。我们使用贝叶斯参数推断和参数图来计算给定重力波观察的物理特性的后验概率。我们估计祖细胞的核心旋转动能与势能($β$)和弹跳后振荡频率的比率。对于$β= 0.02 $的银河中心(8.1 kpc)的超新星,我们的方法可以估计$β$,而高级ligo的$ 90 \%可信间隔为$ 0.004 $,cosmic Explorer的$ 0.0008 $。我们证明,如果核心对宇宙资源管理器观察到的信号的旋转足够快地旋转,我们的方法还可以将protoneutron Star的弹跳后振荡频率提取到$ 5 $ 〜Hz以内的精度($ 90 \%$ $可信的间隔),从而使我们能够限制状态的核方程。对于在麦哲伦云(48.5 kpc)的距离的超新星,宇宙探险者测量这些参数的能力略微降低到旋转的$ 0.003 $,后挥动后振荡频率($ 90 \%可信度的间隔)的旋转后$ 11 $ 〜Hz。麦哲伦云中的来源将太远,无法测量这些特性。
Galactic core-collapse supernovae are among the possible sources of gravitational waves. We investigate the ability of gravitational-wave observatories to extract the properties of the collapsing progenitor from the gravitational waves radiated. We use simulations of supernovae that explore a variety of progenitor core rotation rates and nuclear equations of state and examine the ability of current and future observatories to determine these properties using gravitational-wave parameter estimation. We use principal component analysis of the simulation catalog to determine the dominant features of the waveforms and create a map between the measured properties of the waveform and the physical properties of the progenitor. We use Bayesian parameter inference and the parameter map to calculate posterior probabilities for the physical properties given a gravitational-wave observation. We estimate the ratio of the progenitor's core rotational kinetic energy to potential energy ($β$) and the post bounce oscillation frequency. For a supernovae at the distance of the galactic center (8.1 kpc) with $β= 0.02$ our method can estimate $β$ with a $90\%$ credible interval of $0.004$ for Advanced LIGO, improving to $0.0008$ for Cosmic Explorer. We demonstrate that if the core is rotating sufficiently rapidly for a signal observed by Cosmic Explorer, our method can also extract the post bounce oscillation frequency of the protoneutron star to a precision of within $5$~Hz ($90\%$ credible interval) allowing us to constrain the nuclear equation of state. For a supernovae at the distance of the Magellanic Clouds (48.5 kpc) Cosmic Explorer's ability to measure these parameters decreases slightly to $0.003$ for rotation and $11$~Hz for the postbounce oscillation frequency ($90\%$ credible interval). Sources in Magellanic Clouds will be too distant for Advanced LIGO to measure these properties.