论文标题

正交域和真正的二次家族

Quadrature Domains and the Real Quadratic Family

论文作者

Lazebnik, Kirill

论文摘要

我们研究了几类与正交结构域相关的全体形态动力学系统。我们的主要结果是,可以通过$ \ textrm {psl}(2,\ mathbb {z})$的一致性子组进行完整地配合的Mandelbrot集的主要多项式组件,并且这种完美的交配是简单连接的QuadRature quadrature quadrature quadrature domain domain domain domain。

We study several classes of holomorphic dynamical systems associated with quadrature domains. Our main result is that real-symmetric polynomials in the principal hyperbolic component of the Mandelbrot set can be conformally mated with a congruence subgroup of $\textrm{PSL}(2,\mathbb{Z})$, and that this conformal mating is the Schwarz function of a simply connected quadrature domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源