论文标题

通过少数材料元学习的快速射击分类

Fast Few-Shot Classification by Few-Iteration Meta-Learning

论文作者

Tripathi, Ardhendu Shekhar, Danelljan, Martin, Van Gool, Luc, Timofte, Radu

论文摘要

与现实世界相互作用的自主代理需要有效,可靠地学习新概念。这需要在低数据制度中学习,这是一个高度挑战的问题。我们通过引入一种基于快速优化的元学习方法来解决此任务。它由一个嵌入式网络组成,提供图像的一般表示和基础学习者模块。后者通过展开的优化过程在推理过程中学习线性分类器。我们设计了一个内部学习目标,该目标由(i)支持集对支持集和(ii)熵损失组成,从而可以从未标记的查询样品中进行转导性学习。通过采用有效的初始化模块和最陡峭的基于下降的优化算法,我们的基础学习者仅在少数迭代中预测了功能强大的分类器。此外,我们的策略使基础学习者目标的重要方面可以在元训练期间学习。据我们所知,这项工作是第一个在基于优化的元学习框架中将归纳和转导纳入基础学习者的工作。我们进行了全面的实验分析,证明了我们在四个少量分类数据集上方法的速度和有效性。该代码可在\ href {https://github.com/4rdhendu/fiml} {\ textColor {blue} {https://github.com/4rdhendu/fiml}}}}}}}}}}中获得。

Autonomous agents interacting with the real world need to learn new concepts efficiently and reliably. This requires learning in a low-data regime, which is a highly challenging problem. We address this task by introducing a fast optimization-based meta-learning method for few-shot classification. It consists of an embedding network, providing a general representation of the image, and a base learner module. The latter learns a linear classifier during the inference through an unrolled optimization procedure. We design an inner learning objective composed of (i) a robust classification loss on the support set and (ii) an entropy loss, allowing transductive learning from unlabeled query samples. By employing an efficient initialization module and a Steepest Descent based optimization algorithm, our base learner predicts a powerful classifier within only a few iterations. Further, our strategy enables important aspects of the base learner objective to be learned during meta-training. To the best of our knowledge, this work is the first to integrate both induction and transduction into the base learner in an optimization-based meta-learning framework. We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach on four few-shot classification datasets. The Code is available at \href{https://github.com/4rdhendu/FIML}{\textcolor{blue}{https://github.com/4rdhendu/FIML}}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源