论文标题

拓扑主动物

Topological active matter

论文作者

Shankar, Suraj, Souslov, Anton, Bowick, Mark J., Marchetti, M. Cristina, Vitelli, Vincenzo

论文摘要

主动物质包含不同的非平衡系统,其中各个成分将能量转化为非保守力或微观运动的运动。这篇综述通过实验相关的示例对拓扑在主动物质中的作用提供了基本的介绍。在这里,重点在于拓扑缺陷和拓扑保护的边缘模式,重点是它们在活动媒体中获得的独特性能。这些范式的例子代表了两个物理上不同的现象类别,它们的鲁棒性可以追溯到共同的数学起源:拓扑不变的存在。这些不变的通常是整数数字,无法通过相关顺序参数或基础介质的物理参数的连续变形而更改。我们首先解释了拓扑缺陷自我推动并在主动命名中增殖的机制,从而导致集体状态可以通过几何和图案来操纵。提出了对活性微流体和生物组织的可能影响。然后,我们说明活性流体和固体中波的传播如何受到表征其分散关系的拓扑不变的存在的影响。我们讨论了这些思想对机器人超材料设计的相关性以及主动颗粒和胶体系统的特性。开放的理论和实验挑战将作为未来的研究前景提出。

Active matter encompasses different nonequilibrium systems in which individual constituents convert energy into non-conservative forces or motion at the microscale. This review provides an elementary introduction to the role of topology in active matter through experimentally relevant examples. Here, the focus lies on topological defects and topologically protected edge modes with an emphasis on the distinctive properties they acquire in active media. These paradigmatic examples represent two physically distinct classes of phenomena whose robustness can be traced to a common mathematical origin: the presence of topological invariants. These invariants are typically integer numbers that cannot be changed by continuous deformations of the relevant order parameters or physical parameters of the underlying medium. We first explain the mechanisms whereby topological defects self propel and proliferate in active nematics, leading to collective states which can be manipulated by geometry and patterning. Possible implications for active microfluidics and biological tissues are presented. We then illustrate how the propagation of waves in active fluids and solids is affected by the presence of topological invariants characterizing their dispersion relations. We discuss the relevance of these ideas for the design of robotic metamaterials and the properties of active granular and colloidal systems. Open theoretical and experimental challenges are presented as future research prospects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源