论文标题
数据驱动的心血管流程建模:示例和机会
Data-driven cardiovascular flow modeling: examples and opportunities
论文作者
论文摘要
血流的高保真建模对于增强我们对心血管疾病的理解至关重要。尽管血流的计算和实验表征取得了重大进展,但我们可以从此类研究中获得的知识仍然受到参数不确定性,时空分辨率低和测量噪声的不确定性的限制。此外,从这些数据集中提取有用的信息具有挑战性。数据驱动的建模技术有可能克服这些挑战并改变心血管流程建模。在本文中,我们回顾了几种数据驱动的建模技术,突出了许多此类技术中出现的共同思想和原则,并提供了有关如何在心血管液体机制中使用它们的说明示例。特别是,我们讨论了主成分分析(PCA),鲁棒PCA,压缩传感,卡尔曼(Kalman)数据同化的滤波器,低级别数据恢复以及用于降低心血管流动的减少阶层建模的其他方法,包括动态模式分解(DMD),以及非线性动力学的稀疏鉴定(sindyy)。所有这些技术均以简单示例的心血管流动呈现。这些数据驱动的建模技术有可能改变计算和实验性心血管流量研究,我们讨论了在现场应用这些技术时的挑战和机遇,最终朝着数据驱动的患者特异性血流模型建模。
High-fidelity modeling of blood flow is crucial for enhancing our understanding of cardiovascular disease. Despite significant advances in computational and experimental characterization of blood flow, the knowledge that we can acquire from such investigations remains limited by the presence of uncertainty in parameters, low spatiotemporal resolution, and measurement noise. Additionally, extracting useful information from these datasets is challenging. Data-driven modeling techniques have the potential to overcome these challenges and transform cardiovascular flow modeling. In this paper, we review several data-driven modeling techniques, highlight the common ideas and principles that emerge across numerous such techniques, and provide illustrative examples of how they could be used in the context of cardiovascular fluid mechanics. In particular, we discuss principal component analysis (PCA), robust PCA, compressed sensing, the Kalman filter for data assimilation, low-rank data recovery, and several additional methods for reduced-order modeling for cardiovascular flows, including the dynamic mode decomposition (DMD), and the sparse identification of nonlinear dynamics (SINDy). All of these techniques are presented in the context of cardiovascular flows with simple examples. These data-driven modeling techniques have the potential to transform computational and experimental cardiovascular flow research, and we discuss challenges and opportunities in applying these techniques in the field, looking ultimately towards data-driven patient-specific blood flow modeling.