论文标题

在MR成像中采样对不足采集的采样的采样

Sampling possible reconstructions of undersampled acquisitions in MR imaging

论文作者

Tezcan, Kerem C., Karani, Neerav, Baumgartner, Christian F., Konukoglu, Ender

论文摘要

在MR采集期间对K空间的采样节省了时间,但是导致了一个不适的反转问题,从而导致一组无限的图像作为可能的解决方案。传统上,通过根据某些选择的正则化或先验搜索该解决方案中的单个“最佳”图像来解决这是一个重建问题。但是,这种方法错过了其他解决方案的可能性,因此忽略了反转过程中的不确定性。在本文中,我们提出了一种方法,该方法将返回多个图像,这些图像在采集模型下以及在捕获反转过程中的不确定性之前所选择的方法。为此,我们引入了一个低维的潜在空间,并在K-Space中获得的采集数据进行了模拟潜在向量的后验分布,我们可以从中取样潜在的空间并获得相应的图像。我们为潜在模型和大都市调整后的langevin算法使用差异自动编码器进行采样。我们在两个数据集上评估我们的方法;带有来自人类Connectome项目和内部的图像,测量了多线圈图像。我们将五种替代方法进行比较。结果表明,所提出的方法产生的图像比替代方案更好地匹配了测得的K空间数据,同时显示出现实的结构可变性。此外,与比较方法相比,所提出的方法在预期的情况下会在不确定的相编码方向上产生较高的不确定性。 关键字:磁共振图像重建,不确定性估计,反问题,采样,MCMC,深度学习,无监督学习。

Undersampling the k-space during MR acquisitions saves time, however results in an ill-posed inversion problem, leading to an infinite set of images as possible solutions. Traditionally, this is tackled as a reconstruction problem by searching for a single "best" image out of this solution set according to some chosen regularization or prior. This approach, however, misses the possibility of other solutions and hence ignores the uncertainty in the inversion process. In this paper, we propose a method that instead returns multiple images which are possible under the acquisition model and the chosen prior to capture the uncertainty in the inversion process. To this end, we introduce a low dimensional latent space and model the posterior distribution of the latent vectors given the acquisition data in k-space, from which we can sample in the latent space and obtain the corresponding images. We use a variational autoencoder for the latent model and the Metropolis adjusted Langevin algorithm for the sampling. We evaluate our method on two datasets; with images from the Human Connectome Project and in-house measured multi-coil images. We compare to five alternative methods. Results indicate that the proposed method produces images that match the measured k-space data better than the alternatives, while showing realistic structural variability. Furthermore, in contrast to the compared methods, the proposed method yields higher uncertainty in the undersampled phase encoding direction, as expected. Keywords: Magnetic Resonance image reconstruction, uncertainty estimation, inverse problems, sampling, MCMC, deep learning, unsupervised learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源