论文标题

RG-Flow:基于重新归一化组和稀疏先验的分层和可解释的流程模型

RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior

论文作者

Hu, Hong-Ye, Wu, Dian, You, Yi-Zhuang, Olshausen, Bruno, Chen, Yubei

论文摘要

基于流量的生成模型已成为一系列重要的无监督学习方法。在这项工作中,我们结合了重新归一化组(RG)的关键思想和稀疏的先验分布,以设计基于层次的生成模型RG-Flow,该模型可以在不同的图像尺度上分离图像的不同信息,并在每个量表上提取分散的表示。我们演示了我们的合成多尺度图像数据集和Celeba数据集的方法,表明删除表示形式可以在不同尺度上对图像的语义操纵和样式混合。为了可视化潜在表示,我们引入了基于流的模型的接受场,并表明RG-Flow的接受场与卷积神经网络的接收场相似。此外,我们通过稀疏的拉普拉斯分布代替了广泛采用的各向同性高斯先前分布,以进一步增强表示形式的分离。从理论角度来看,与以前具有$ O(l^2)$复杂性的生成模型相比,我们提出的方法具有$ o(\ log l)$复杂性,用于覆盖具有边缘长度$ l $的图像。

Flow-based generative models have become an important class of unsupervised learning approaches. In this work, we incorporate the key ideas of renormalization group (RG) and sparse prior distribution to design a hierarchical flow-based generative model, RG-Flow, which can separate information at different scales of images and extract disentangled representations at each scale. We demonstrate our method on synthetic multi-scale image datasets and the CelebA dataset, showing that the disentangled representations enable semantic manipulation and style mixing of the images at different scales. To visualize the latent representations, we introduce receptive fields for flow-based models and show that the receptive fields of RG-Flow are similar to those of convolutional neural networks. In addition, we replace the widely adopted isotropic Gaussian prior distribution by the sparse Laplacian distribution to further enhance the disentanglement of representations. From a theoretical perspective, our proposed method has $O(\log L)$ complexity for inpainting of an image with edge length $L$, compared to previous generative models with $O(L^2)$ complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源