论文标题

3D渐近平面高旋转重力中的标量场

Scalar Fields in 3D Asymptotically Flat Higher-Spin Gravity

论文作者

Ammon, Martin, Pannier, Michel, Riegler, Max

论文摘要

在这项工作中,我们构建了一个新型的联想代数,并使用它来定义(2+1) - 差异渐近平坦的空位中的高旋转重力理论。 Our construction is based on a quotient of the universal enveloping algebra (UEA) of $\mathfrak{isl}(2,\mathbb{R})$ with respect to the ideal generated by its Casimir elements, the mass squared $\mathcal{M}^2$ and the three-dimensional analogue of the square of the Pauli-Lubanski vector $\mathcal{S}$并建议调用结果的关联代数$ \ Mathfrak {ihs}(\ Mathcal {M}^2,\ Mathcal {s})$。我们提供了其发电机的定义,即使我们尚未提供该代数的完整乘法规则集,我们的分析使我们能够研究$ \ Mathfrak {ihs} {ihs}(\ Mathcal {M}^2,^2,\ Mathcal {s})的许多有趣且相关的子结构。然后,我们展示如何始终将标量字段与$ \ mathfrak {ihs}(\ Mathcal {M}^2,\ Mathcal {s})$高纺量规理论。

In this work we construct a novel associative algebra and use it to define a theory of higher-spin gravity in (2+1)-dimensional asymptotically flat spacetimes. Our construction is based on a quotient of the universal enveloping algebra (UEA) of $\mathfrak{isl}(2,\mathbb{R})$ with respect to the ideal generated by its Casimir elements, the mass squared $\mathcal{M}^2$ and the three-dimensional analogue of the square of the Pauli-Lubanski vector $\mathcal{S}$ and propose to call the resulting associative algebra $\mathfrak{ihs}(\mathcal{M}^2,\mathcal{S})$. We provide a definition of its generators and even though we are not yet able to provide the complete set of multiplication rules of this algebra our analysis allows us to study many interesting and relevant sub-structures of $\mathfrak{ihs}(\mathcal{M}^2,\mathcal{S})$. We then show how to consistently couple a scalar field to an $\mathfrak{ihs}(\mathcal{M}^2,\mathcal{S})$ higher-spin gauge theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源