论文标题

深度强化学习过程合成

Deep Reinforcement Learning for Process Synthesis

论文作者

Midgley, Laurence Illing

论文摘要

本文展示了增强学习(RL)通过呈现蒸馏健身房的应用来处理综合,这是一组RL环境,其中RL代理的任务是设计蒸馏列车,鉴于用户定义的多组件进料流。蒸馏健身房与工艺模拟器(可可和Chemsep)的界面,以模拟环境。本文讨论了两个蒸馏问题示例的证明(苯,甲苯,P-二甲苯分离问题和碳氢化合物分离问题),其中深层RL药剂能够成功地在蒸馏体育馆内学习以产生合理的设计。最后,本文提出了化学工程体育馆的创建,这是一种用于化学工程过程合成的通用增强软件工具包。

This paper demonstrates the application of reinforcement learning (RL) to process synthesis by presenting Distillation Gym, a set of RL environments in which an RL agent is tasked with designing a distillation train, given a user defined multi-component feed stream. Distillation Gym interfaces with a process simulator (COCO and ChemSep) to simulate the environment. A demonstration of two distillation problem examples are discussed in this paper (a Benzene, Toluene, P-xylene separation problem and a hydrocarbon separation problem), in which a deep RL agent is successfully able to learn within Distillation Gym to produce reasonable designs. Finally, this paper proposes the creation of Chemical Engineering Gym, an all-purpose reinforcement learning software toolkit for chemical engineering process synthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源