论文标题
在过渡金属二甲基元素单层中对拓扑激子 - 两极的实验观察
Experimental observation of topological exciton-polaritons in transition metal dichalcogenide monolayers
论文作者
论文摘要
量子科学和技术的兴起激发了光子学研究,以寻求具有强烈的光结合相互作用的新平台,以促进中等光强度的量子行为。偏光式元面积提供了一个有前途的平台,可以达到如此强大的光结合态度,它代表了在纳米尺度上构成的超薄人工媒体,旨在支持极化子 - 半灯半光半粒子。在这种情况下,拓扑偏振剂或“ polpolaritons”为理想的平台提供了一个理想的平台,其独特的特性源于光的拓扑阶段与物质强烈耦合。在这里,我们探索了基于2D过渡金属二核苷(TMDS)的偏振元面积,这些金属二色质基(TMDS)支持面内偏振激子共振,作为拓扑偏振层学的有前途的平台。我们通过在TMD单层中强烈耦合山谷偏光式内部激子,并具有适当设计的全dielectric拓扑光子跨表面。我们首先表明,在mose2中,由元表面和激子带支持的拓扑光子波段之间的强耦合产生了有效的相绕组,并过渡到层状旋转式旋转台状状态。然后,我们在实验上意识到这一现象,并确认单向自旋偏边层状子的存在。该系统与Mose2单层中的山谷极化相结合,可以采用一种新方法来吸引TMDS中光子角动量和山谷自由度,为valleytronics和Spintronics提供了光子/固态接口的有希望的平台。
The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. One promising platform to reach such strong light-matter interacting regimes is offered by polaritonic metasurfaces, which represent ultrathin artificial media structured on nano-scale and designed to support polaritons - half-light half-matter quasiparticles. Topological polaritons, or 'topolaritons', offer an ideal platform in this context, with unique properties stemming from topological phases of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) supporting in-plane polarized exciton resonances as a promising platform for topological polaritonics. We enable a spin-Hall topolaritonic phase by strongly coupling valley polarized in-plane excitons in a TMD monolayer with a suitably engineered all-dielectric topological photonic metasurface. We first show that the strong coupling between topological photonic bands supported by the metasurface and excitonic bands in MoSe2 yields an effective phase winding and transition to a topolaritonic spin-Hall state. We then experimentally realize this phenomenon and confirm the presence of one-way spin-polarized edge topolaritons. Combined with the valley polarization in a MoSe2 monolayer, the proposed system enables a new approach to engage the photonic angular momentum and valley degree of freedom in TMDs, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.