论文标题
Google Covid-19社区流动性报告:多标准决策的见解
Google COVID-19 community mobility reports: insights from multi-criteria decision making
论文作者
论文摘要
社会距离(SD)在与新型冠状病毒疾病的斗争中至关重要(Covid-19)。为了帮助SD监控,许多技术公司提供了可用的移动性数据,最突出的例子是Google提供的社区移动性报告(CMR)。鉴于已经从CMR数据中吸引了一些见解的广泛研究领域,人们对如何使用它们的方法论讨论引起了人们的关注。确实,Google最近发布了有关地点类别的性质以及对区域价值观的需求的发布。在这项工作中,我们讨论了多标准决策(MCDM)领域中开发的措施如何使研究人员有益于分析该数据的研究人员。具体而言,我们讨论了MCDM中帕累托的优势和绩效指标如何使(i)在给定时间段的多个类别以及(ii)多个时间段内的多个类别的移动性评估。我们从经验上证明了进行地区和国家级分析的这些方法,比较了来自不同大陆的一些最相关的爆发例子。
Social distancing (SD) has been critical in the fight against the novel coronavirus disease (COVID-19). To aid SD monitoring, many technology companies have made available mobility data, the most prominent example being the community mobility reports (CMR) provided by Google. Given the wide range of research fields that have been drawing insights from CMR data, there has been a rising concern for methodological discussion on how to use them. Indeed, Google recently released their own guidelines, concerning the nature of the place categories and the need for calibrating regional values. In this work, we discuss how measures developed in the field of multi-criteria decision making (MCDM) might benefit researchers analyzing this data. Concretely, we discuss how Pareto dominance and performance measures adopted in MCDM enable the mobility evaluation for (i) multiple categories for a given time period and (ii) multiple categories over multiple time periods. We empirically demonstrate these approaches conducting both a region- and country-level analysis, comparing some of the most relevant outbreak examples from different continents.