论文标题

探索实例生成自动计划

Exploring Instance Generation for Automated Planning

论文作者

Akgün, Özgür, Dang, Nguyen, Espasa, Joan, Miguel, Ian, Salamon, András Z., Stone, Christopher

论文摘要

人工智能的许多核心学科都有一组标准基准问题,在开发新算法时,社区广泛使用并广泛使用。约束编程和自动化计划是这些领域的示例,在这些领域中,新算法的行为是通过在这些实例上的性能来衡量的。通常,每种求解方法的效率不仅在问题之间有所不同,而且在同一问题的实例之间也有所不同。因此,拥有多种实例对于能够有效评估一种新的解决方法至关重要。当前用于自动生成约束编程问题实例的方法始于声明性模型,并搜索具有某些所需属性(例如硬度或大小)的实例。我们首先探讨了适应这种方法来生成实例的困难,该实例是从PDDL编写的问题规格开始的,PDDL是自动化计划社区的事实上的标准语言。然后,我们提出了一种新方法,其中整个计划问题描述是使用Essence建模的,Essence是一种抽象的建模语言,允许表达高级结构,而无需在PDDL中进行特定的低级表示。

Many of the core disciplines of artificial intelligence have sets of standard benchmark problems well known and widely used by the community when developing new algorithms. Constraint programming and automated planning are examples of these areas, where the behaviour of a new algorithm is measured by how it performs on these instances. Typically the efficiency of each solving method varies not only between problems, but also between instances of the same problem. Therefore, having a diverse set of instances is crucial to be able to effectively evaluate a new solving method. Current methods for automatic generation of instances for Constraint Programming problems start with a declarative model and search for instances with some desired attributes, such as hardness or size. We first explore the difficulties of adapting this approach to generate instances starting from problem specifications written in PDDL, the de-facto standard language of the automated planning community. We then propose a new approach where the whole planning problem description is modelled using Essence, an abstract modelling language that allows expressing high-level structures without committing to a particular low level representation in PDDL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源