论文标题

大型MIMO频道预测:Kalman过滤与机器学习

Massive MIMO Channel Prediction: Kalman Filtering vs. Machine Learning

论文作者

Kim, Hwanjin, Kim, Sucheol, Lee, Hyeongtaek, Jang, Chulhee, Choi, Yongyun, Choi, Junil

论文摘要

本文着重于大规模多输入多输出(MIMO)系统的通道预测技术。先前的通道预测因子基于理论通道模型,该模型将偏离逼真的通道。在本文中,我们使用空间通道模型(SCM)的逼真的通道(SCM)开发和比较了基于基于的媒介Kalman滤波器(VKF)基于基于机器的通道预测指标(ML)基于机器学习(ML)的通道预测变量,该通道已在3GPP标准中使用了多年。首先,我们建议使用大量MIMO中的大量天线根据空间平均值提出低复杂性迁移率估计器。移动性估计值可用于确定开发预测变量的复杂性顺序。本文开发的基于VKF的通道预测变量利用了基于Yule-Walker方程从SCM通道估算的自回归(AR)参数。然后,开发了基于ML的基于ML的通道预测变量,使用线性最小均方根误差(LMMSE)的噪声预处理数据。数值结果表明,就通道预测的准确性和数据速率而言,两个通道预测指标都比过时的通道具有可观的增益。基于ML的预测指标比基于VKF的预测指标具有更大的总体计算复杂性,但是一旦受过训练,基于ML的预测变量的操作复杂性就会比基于VKF的预测变量小。

This paper focuses on channel prediction techniques for massive multiple-input multiple-output (MIMO) systems. Previous channel predictors are based on theoretical channel models, which would be deviated from realistic channels. In this paper, we develop and compare a vector Kalman filter (VKF)-based channel predictor and a machine learning (ML)-based channel predictor using the realistic channels from the spatial channel model (SCM), which has been adopted in the 3GPP standard for years. First, we propose a low-complexity mobility estimator based on the spatial average using a large number of antennas in massive MIMO. The mobility estimate can be used to determine the complexity order of developed predictors. The VKF-based channel predictor developed in this paper exploits the autoregressive (AR) parameters estimated from the SCM channels based on the Yule-Walker equations. Then, the ML-based channel predictor using the linear minimum mean square error (LMMSE)-based noise pre-processed data is developed. Numerical results reveal that both channel predictors have substantial gain over the outdated channel in terms of the channel prediction accuracy and data rate. The ML-based predictor has larger overall computational complexity than the VKF-based predictor, but once trained, the operational complexity of ML-based predictor becomes smaller than that of VKF-based predictor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源