论文标题
Zygmund和Hölder类中的近似值
Approximation in the Zygmund and Hölder classes on $\mathbb{R}^n$
论文作者
论文摘要
我们确定Zygmund类$λ_ {\ ast}(\ Mathbb {r}^n)$的距离(乘积常数)到子空间$ \ Mathrm {j}(\ MathBf {bmo})(bmo})(\ MathBb {bmo})(\ sathbb {r}^n)是$ bess $ bess y luge p image。 (1-δ)^{ - 1/2} $的空间$ \ mathbf {bmo}(\ mathbb {r}^n),$是经典$ \ mathrm {bmo}的非均匀版本。 $ \ mathrm {J}(\ Mathbf {bmo})(\ Mathbb {r}^n)$由函数组成,它们的第一个衍生物与它们的第一个衍生物一起使用$ \ Mathbf {bmo}(bmo}(\ Mathbb {r}^n)。 $λ_{s}(\ Mathbb {r}^n),$带有$ 0 <s \ leq 1 $,相应的子空间为$ \ Mathrm {j} _ {s} _ {\ Mathbf {bmo}) $ \ mathbf {bmo}(\ mathbb {r}^n)。 我们的结果以第二个差异表示。 As a byproduct of our wavelet based proof, we also obtain the distance from $f \in Λ_{s}(\mathbb{R}^n)$ to $\mathrm{J}_{s}(\mathbf{bmo})(\mathbb{R}^n)$ in terms of the wavelet coefficients of $f.$ We additionally establish a third以$ f $的双曲线梯度的大小来表达此距离的方式,上半空间$ \ mathbb {r}^{n+1} _ {+} $。
We determine the distance (up to a multiplicative constant) in the Zygmund class $Λ_{\ast}(\mathbb{R}^n)$ to the subspace $\mathrm{J}(\mathbf{bmo})(\mathbb{R}^n).$ The latter space is the image under the Bessel potential $J := (1-Δ)^{-1/2}$ of the space $\mathbf{bmo}(\mathbb{R}^n),$ which is a non-homogeneous version of the classical $\mathrm{BMO}.$ Locally, $\mathrm{J}(\mathbf{bmo})(\mathbb{R}^n)$ consists of functions that together with their first derivatives are in $\mathbf{bmo}(\mathbb{R}^n).$ More generally, we consider the same question when the Zygmund class is replaced by the Hölder space $Λ_{s}(\mathbb{R}^n),$ with $0 < s \leq 1$ and the corresponding subspace is $\mathrm{J}_{s}(\mathbf{bmo})(\mathbb{R}^n),$ the image under $(1-Δ)^{-s/2}$ of $\mathbf{bmo}(\mathbb{R}^n).$ One should note here that $Λ_{1}(\mathbb{R}^n) = Λ_{\ast}(\mathbb{R}^n).$ Such results were known earlier only for $n = s = 1$ with a proof that does not extend to the general case. Our results are expressed in terms of second differences. As a byproduct of our wavelet based proof, we also obtain the distance from $f \in Λ_{s}(\mathbb{R}^n)$ to $\mathrm{J}_{s}(\mathbf{bmo})(\mathbb{R}^n)$ in terms of the wavelet coefficients of $f.$ We additionally establish a third way to express this distance in terms of the size of the hyperbolic gradient of the harmonic extension of $f$ on the upper half-space $\mathbb{R}^{n+1}_{+}.$