论文标题

建议系统的深层混合模型

A Deep Hybrid Model for Recommendation Systems

论文作者

cakir, Muhammet, oguducu, sule gunduz, tugay, resul

论文摘要

在许多领域,从电子商务到社交网站,建议是一个长期存在的问题。当前的大多数研究仅着眼于传统方法,例如基于内容或协作的过滤,而在混合推荐系统中的研究相对较少。由于在包括计算机视觉和自然语言处理在内的不同领域取得的深度学习的最新进展,深度学习在推荐系统中也引起了很多关注。有几项研究利用用户和项目的ID嵌入来实现与深神经网络的协作过滤。但是,此类研究并未利用输入的其他分类或连续特征。在本文中,我们提出了一种新的深神经网络体系结构,不仅包括ID嵌入,还包括辅助信息,例如工作发布的功能和候选人的工作推荐系统,这是一个相互推荐的系统。来自工作站点的数据集上的实验结果表明,提出的方法改善了使用ID嵌入的深度学习模型的建议结果。

Recommendation has been a long-standing problem in many areas ranging from e-commerce to social websites. Most current studies focus only on traditional approaches such as content-based or collaborative filtering while there are relatively fewer studies in hybrid recommender systems. Due to the latest advances of deep learning achieved in different fields including computer vision and natural language processing, deep learning has also gained much attention in Recommendation Systems. There are several studies that utilize ID embeddings of users and items to implement collaborative filtering with deep neural networks. However, such studies do not take advantage of other categorical or continuous features of inputs. In this paper, we propose a new deep neural network architecture which consists of not only ID embeddings but also auxiliary information such as features of job postings and candidates for job recommendation system which is a reciprocal recommendation system. Experimental results on the dataset from a job-site show that the proposed method improves recommendation results over deep learning models utilizing ID embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源