论文标题

在趋化模型中,无限时间爆炸的质量阈值

Mass threshold for infinite-time blowup in a chemotaxis model with splitted population

论文作者

Laurençot, Philippe, Stinner, Christian

论文摘要

我们研究趋化模型$ \ partial $ t u = div($ \ nabla $ u -u $ \ u $ \ nabla $ w) + $θ$ v -u in(0,$ \ infty $)x $ \ partial $ t v = u -t v = u -$θ$ v in(0,$ \ iffty $ $ $ \ $ $ $ $ $ $ $ f = - v in(0,$ \ infty $)x $ω$,在有限且光滑的域$ω$ $ \ subset $ r 2中具有无升华边界条件,其中u和v代表了某些物种的移动和静态个体的密度,以及浓度的浓度。我们证明,在适当的功能环境中,所有解决方案都在全球范围内及时存在。此外,我们确定了整个种群u + v的临界质量m c> 0的存在,使得对于$(0,m c)中的m $ \,任何解决方案都是有限的,而对于几乎所有m> m c,在无限时间内都存在解决方案。分析的基础是Liapunov功能的构建。据我们所知,这是当大众保护包括两个亚群(不仅是移动的亚群)时,这是这种结果的第一个结果。

We study the chemotaxis model $\partial$ t u = div($\nabla$u -- u$\nabla$w) + $θ$v -- u in (0, $\infty$) x $Ω$, $\partial$ t v = u -- $θ$v in (0, $\infty$) x $Ω$, $\partial$ t w = D$Δ$w -- $α$w + v in (0, $\infty$) x $Ω$, with no-flux boundary conditions in a bounded and smooth domain $Ω$ $\subset$ R 2 , where u and v represent the densities of subpopulations of moving and static individuals of some species, respectively, and w the concentration of a chemoattractant. We prove that, in an appropriate functional setting, all solutions exist globally in time. Moreover, we establish the existence of a critical mass M c > 0 of the whole population u + v such that, for M $\in$ (0, M c), any solution is bounded, while, for almost all M > M c , there exist solutions blowing up in infinite time. The building block of the analysis is the construction of a Liapunov functional. As far as we know, this is the first result of this kind when the mass conservation includes the two subpopulations and not only the moving one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源