论文标题

没有直流的涡流 - 速度梯度的特征分数

No vortex in straight flows -- on the eigen-representations of velocity gradient

论文作者

Xu, Xiangyang, Xu, Zhiwen, Tang, Changxin, Zhang, Xiaohang, Zou, Wennan

论文摘要

速度梯度是许多涡流识别方法的基础,例如Q标准,$Δ$标准,$λ_{2} $标准,$λ_{CI} $标准和$ω$标准和$ω$标准等。分解将速度梯度分解为应变速率和自旋。近年来,“直流中无涡流”的直觉促进了人们直接与速度梯度分析涡流状态,在这种情况下,速度梯度可以将涡流与速度梯度具有循环相对复杂的特征值的情况。许多作者强调了采用简单剪切作为独立流程模式的一种奇异的观点,其中Kolar提出了通过提取所谓的有效纯剪切运动的三重运动分解。 Li等。引入了速度梯度的所谓四元化分解,并提出了特征旋转的概念。刘等。进一步挖掘了速度梯度的特征信息,并提出了LIUTEX的有效算法,然后开发了涡旋识别方法。但是,还有一个解释速度梯度越来越清晰的表示,这是基于关键点理论的局部流线模式。在本文中,从速度梯度的特征问题中阐明了右/左实际Schur形式的右图表达式。涉及参数之间的关系被得出并进行数值验证。与局部流线模式的几何特征相比,我们确认基于右欧文 - 代理中的参数基于正确的真实Schur速度梯度形式具有良好的含义,可以揭示局部流线模式。提供了一些DNS数据中的一些说明性示例。

Velocity gradient is the basis of many vortex recognition methods, such as Q criterion, $Δ$ criterion, $λ_{2}$ criterion, $λ_{ci}$ criterion and $Ω$ criterion, etc.. Except the $λ_{ci}$ criterion, all these criterions recognize vortices by designing various invariants, based on the Helmholtz decomposition that decomposes velocity gradient into strain rate and spin. In recent years, the intuition of 'no vortex in straight flows' has promoted people to analyze the vortex state directly from the velocity gradient, in which vortex can be distinguished from the situation that the velocity gradient has couple complex eigenvalues. A specious viewpoint to adopt the simple shear as an independent flow mode was emphasized by many authors, among them, Kolar proposed the triple decomposition of motion by extracting a so-called effective pure shearing motion; Li et al. introduced the so-called quaternion decomposition of velocity gradient and proposed the concept of eigen rotation; Liu et al. further mined the characteristic information of velocity gradient and put forward an effective algorithm of Liutex, and then developed the vortex recognition method. However, there is another explanation for the increasingly clear representation of velocity gradient, that is the local streamline pattern based on critical-point theory. In this paper, the tensorial expressions of the right/left real Schur forms of velocity gradient are clarified from the characteristic problem of velocity gradient. The relations between the involved parameters are derived and numerically verified. Comparing with the geometrical features of local streamline pattern, we confirm that the parameters in the right eigen-representation based on the right real Schur form of velocity gradient have good meanings to reveal the local streamline pattern. Some illustrative examples from the DNS data are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源