论文标题

脑电图识别的新型可转移性关注神经网络模型

A Novel Transferability Attention Neural Network Model for EEG Emotion Recognition

论文作者

Li, Yang, Fu, Boxun, Li, Fu, Shi, Guangming, Zheng, Wenming

论文摘要

脑电图(EEG)情绪识别的存在方法总是基于所有EEG样本训练模型。但是,某些来源(训练)样本可能会导致负面影响,因为它们与目标(测试)样本显着不同。因此,有必要更多地关注具有强大可传递性的脑电图样本,而不是由所有样品强制训练分类模型。此外,对于脑电图样本,从神经科学的方面,脑电图样本的所有大脑区域都包含可以有效传输到测试数据的情绪信息。甚至某些大脑区域数据也会对学习情绪分类模型产生强烈的负面影响。考虑到这两个问题,在本文中,我们提出了一个可转移的注意力神经网络(TANN),以供脑电图识别,该网络通过强调可转移的脑电图大脑区域数据和通过局部和全球注意力机制来自适应地来学习情感歧视性信息。这可以通过测量多个大脑区域级别的歧视器和一个单个样本级别歧视器的输出来实现。我们对三个公共脑电图情绪数据集进行了广泛的实验。结果证明了所提出的模型可以实现最新的性能。

The existed methods for electroencephalograph (EEG) emotion recognition always train the models based on all the EEG samples indistinguishably. However, some of the source (training) samples may lead to a negative influence because they are significant dissimilar with the target (test) samples. So it is necessary to give more attention to the EEG samples with strong transferability rather than forcefully training a classification model by all the samples. Furthermore, for an EEG sample, from the aspect of neuroscience, not all the brain regions of an EEG sample contains emotional information that can transferred to the test data effectively. Even some brain region data will make strong negative effect for learning the emotional classification model. Considering these two issues, in this paper, we propose a transferable attention neural network (TANN) for EEG emotion recognition, which learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively through local and global attention mechanism. This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator. We conduct the extensive experiments on three public EEG emotional datasets. The results validate that the proposed model achieves the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源