论文标题
特殊W-Algebras $ \ Mathcal {w} _K(\ Mathfrak {sp} _4,f_ {subreg})$与$ \ mathfrak的子规范nilpotent元素相关的合理性
Rationality of the exceptional W-algebras $\mathcal{W}_k(\mathfrak{sp}_4,f_{subreg})$ associated with subregular nilpotent elements of $\mathfrak{sp}_4$
论文作者
论文摘要
我们证明了与简单的谎言代数$ \ mathfrak {sp} _4 $和子规则的nilpotent元素相关的特殊W-代数的合理性,证明了一种猜想的Kac-Wakimoto的新特定情况。此外,我们描述了简单的$ \ Mathcal {w} _K(\ Mathfrak {sp} _4,f_ {subreg})$ - 模块并计算其字符。我们还将组件组在这些简单模块的集合中的非平地作用阐明。
We prove the rationality of the exceptional W-algebras associated with the simple Lie algebra $\mathfrak{sp}_4$ and subregular nilpotent elements, proving a new particular case of a conjecture of Kac-Wakimoto. Moreover, we describe the simple $\mathcal{W}_k(\mathfrak{sp}_4,f_{subreg})$-modules and compute their characters. We also explicit the nontrivial action of the component group on the set of these simple modules.