论文标题

银河系和大会:GAMA/GAMA中的Galaxy-Galaxy镜头搜索之间的比较

Galaxy And Mass Assembly: A Comparison between Galaxy-Galaxy Lens Searches in KiDS/GAMA

论文作者

Knabel, Shawn, Steele, Rebecca L., Holwerda, Benne W., Bridge, Joanna S., Jacques, Alice, Hopkins, Andrew, Bamford, Steven P., Brown, Michael J. I., Brough, Sarah, Kelvin, Lee S., Bilicki, Maciej, Kielkopf, John

论文摘要

强力透镜是一种罕见且具有启发性的天文对象类型。识别长期以来一直依赖偶然性,但是已经采用了不同的策略,例如沿视线的多个星系的混合光谱,机器学习算法和公民科学 - 已被用来识别这些对象作为新成像调查的可用性。 我们报告了光谱,机器学习和公民科学对GAMA调查的赤道赤道调查领域中独立晶状体目录的星系 - 盖晶晶出候选者的比较。在其中,我们有机会将高度完整的光谱识别与用于机器学习和公民科学镜头搜索的Kilo学位调查(KIDS)的高保真成像进行比较。 我们发现,在调查的180平方公段中分别确定了三种方法 - 光谱,机器学习和公民科学 - 分别确定47、47和13个候选人。这些标识几乎没有重叠,只有两个公民科学和机器学习都标识了两种。我们将这种差异追溯到这三种方法中每种方法的选择函数的内在差异,无论是在其父样本中(即公民科学侧重于低红移)或固有的方法(即机器学习受培训样本的限制,并且受其分离良好的特征,而光谱却需要足够的功能,需要从固定的特征中进行足够的范围)。这些差异表现为估计的爱因斯坦半径,镜头恒星质量和透镜红移中的单独样品。合并的样本意味着镜头候选天空密度$ \ sim0.59 $ deg $^{ - 2} $,并可以告知跨越更大的质量降低空间的训练套件的构建。

Strong gravitational lenses are a rare and instructive type of astronomical object. Identification has long relied on serendipity, but different strategies -- such as mixed spectroscopy of multiple galaxies along the line of sight, machine learning algorithms, and citizen science -- have been employed to identify these objects as new imaging surveys become available. We report on the comparison between spectroscopic, machine learning, and citizen science identification of galaxy-galaxy lens candidates from independently constructed lens catalogs in the common survey area of the equatorial fields of the GAMA survey. In these, we have the opportunity to compare high-completeness spectroscopic identifications against high-fidelity imaging from the Kilo Degree Survey (KiDS) used for both machine learning and citizen science lens searches. We find that the three methods -- spectroscopy, machine learning, and citizen science -- identify 47, 47, and 13 candidates respectively in the 180 square degrees surveyed. These identifications barely overlap, with only two identified by both citizen science and machine learning. We have traced this discrepancy to inherent differences in the selection functions of each of the three methods, either within their parent samples (i.e. citizen science focuses on low-redshift) or inherent to the method (i.e. machine learning is limited by its training sample and prefers well-separated features, while spectroscopy requires sufficient flux from lensed features to lie within the fiber). These differences manifest as separate samples in estimated Einstein radius, lens stellar mass, and lens redshift. The combined sample implies a lens candidate sky-density $\sim0.59$ deg$^{-2}$ and can inform the construction of a training set spanning a wider mass-redshift space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源