论文标题
高振幅伽马多拉德斯变量
High-Amplitude gamma Doradus Variables
论文作者
论文摘要
根据大多数文献来源的说法,在约翰逊五世中观察到的脉冲变异性幅度不超过0.1 mag。我们已经分析了15个高振幅伽玛多拉德斯星星具有光度峰值峰值峰值峰值峰值的峰值峰值,并在该限制中脱颖而出,并在其范围内进行了范围,并在这些机构中脱颖而出。低振幅对应物。我们已经计算了天体物理参数,并研究了高振幅伽玛doradus星的位置,并研究了log teff与log l图中的15个低振幅对象的对照样本。使用调查数据和我们自己的观察结果,我们使用离散的傅立叶变换分析了目标恒星的光度变异性。研究了观察到的主要频率,幅度和其他参数(例如有效温度和发光度)之间的相关性。高振幅伽玛doradus星的异常高振幅可以通过与它们的组合和泛音频率相互作用时的几个基本频率的叠加来解释。尽管主要频率的最大振幅不超过0.1 mag的振幅,但可以以这种方式达到总光变性幅度超过0.3 mag(v)。低振幅和高振幅伽玛doradus恒星在其总变异幅度以外的任何其他方面都没有物理上不同,而仅代表了相同的统一变量群的两个末端。
According to most literature sources, the amplitude of the pulsational variability observed in gamma Doradus stars does not exceed 0.1 mag in Johnson V. We have analyzed fifteen high-amplitude gamma Doradus stars with photometric peak-to-peak amplitudes well beyond this limit, with the aim of unraveling the mechanisms behind the observed high amplitudes and investigating whether these objects are in any way physically distinct from their low-amplitude counterparts. We have calculated astrophysical parameters and investigated the location of the high-amplitude gamma Doradus stars and a control sample of fifteen low-amplitude objects in the log Teff versus log L diagram. Employing survey data and our own observations, we analyzed the photometric variability of our target stars using discrete Fourier transform. Correlations between the observed primary frequencies, amplitudes and other parameters like effective temperature and luminosity were investigated. The unusually high amplitudes of the high-amplitude gamma Doradus stars can be explained by the superposition of several base frequencies in interaction with their combination and overtone frequencies. Although the maximum amplitude of the primary frequencies does not exceed an amplitude of 0.1 mag, total light variability amplitudes of over 0.3 mag (V) can be attained in this way. Low- and high-amplitude gamma Doradus stars do not appear to be physically distinct in any other respect than their total variability amplitudes but merely represent two ends of the same, uniform group of variables.