论文标题
人口敏感性差异及其对触传动力的影响
Population Susceptibility Variation and Its Effect on Contagion Dynamics
论文作者
论文摘要
敏感性控制着传染的动力。经典的SIR模型是传播传播的最简单隔室模型之一,假设单一共有易感性水平。但是,人口易感性的差异可以从根本上影响传染的动力学,从而最终会影响大流行的最终结果。我们开发了数学机制,该机制明确考虑了敏感性的变化,阐明了如何通过传播雕刻的易感性分布,因此这种变化如何影响控制传染病的SIR差异问题。我们的方法使我们能够根据初始敏感性分布的函数得出牛群免疫阈值的封闭形式表达式,并提出当只有一小部分人口才能访问这种干预时,直觉上令人满意的接种方法。特别值得一提的是,如果我们假设个体在易感池中的静态敏感性,则忽略了易感性多样性{\ em始终}会导致高估群的免疫力阈值,而这种差异可能是显着的。因此,我们应该制定易感变化的强大度量,这是处理大流行病的公共卫生策略的一部分。
Susceptibility governs the dynamics of contagion. The classical SIR model is one of the simplest compartmental models of contagion spread, assuming a single shared susceptibility level. However, variation in susceptibility over a population can fundamentally affect the dynamics of contagion and thus the ultimate outcome of a pandemic. We develop mathematical machinery which explicitly considers susceptibility variation, illuminates how the susceptibility distribution is sculpted by contagion, and thence how such variation affects the SIR differential questions that govern contagion. Our methods allow us to derive closed form expressions for herd immunity thresholds as a function of initial susceptibility distributions and suggests an intuitively satisfying approach to inoculation when only a fraction of the population is accessible to such intervention. Of particular interest, if we assume static susceptibility of individuals in the susceptible pool, ignoring susceptibility diversity {\em always} results in overestimation of the herd immunity threshold and that difference can be dramatic. Therefore, we should develop robust measures of susceptibility variation as part of public health strategies for handling pandemics.