论文标题
左尖衍生器的K理论
The K-theory of left pointed derivators
论文作者
论文摘要
我们在[Ann。 K理论2(2017),没有。 2,303-340]和[Adv。数学。 217(2008),没有。 4,1381-1475]为了证明衍生物K理论的添加性适用于我们称之为左尖的衍生物的大量衍生物,其中包括所有三角衍生物。证明方法是对格雷森组合方法的改编[doc。数学。 16(2011),457-464]。作为推论,我们证明衍生物K理论是无限的环路。最后,我们推测衍生物K理论的作用是稳定的$ \ infty $ -scategory的代数K理论的痕迹。 Topol。 17(2013),没有。 2,733-838]。
We build on work of Muro-Raptis in [Ann. K-Theory 2 (2017), no. 2, 303-340] and Cisinski-Neeman in [Adv. Math. 217 (2008), no. 4, 1381-1475] to prove that the additivity of derivator K-theory holds for a large class of derivators that we call left pointed derivators, which includes all triangulated derivators. The proof methodology is an adaptation of the combinatorial methods of Grayson in [Doc. Math. 16 (2011), 457-464]. As a corollary, we prove that derivator K-theory is an infinite loop space. Finally, we speculate on the role of derivator K-theory as a trace from the algebraic K-theory of a stable $\infty$-category à la Blumberg-Gepner-Tabuada in [Geom. Topol. 17 (2013), no. 2, 733-838].