论文标题

使用客观分割质量标准优化和比较源提取工具

Optimising and comparing source extraction tools using objective segmentation quality criteria

论文作者

Haigh, Caroline, Chamba, Nushkia, Venhola, Aku, Peletier, Reynier, Doorenbos, Lars, Watkins, Matthew, Wilkinson, Michael H. F.

论文摘要

随着天文成像调查的规模,深度和分辨率的增长,需要从图像中高度准确的自动检测和提取天文来源的需求。这也意味着需要客观质量标准以及自动化方法来优化这些软件工具的参数设置。 我们介绍了已经开发出来执行此任务的几种工具的比较:即Sextractor,深刻的,Noisechisel和Mtobjects。特别是,我们专注于在情况下评估绩效,这些绩效提出了检测挑战的情况 - 例如,微弱和弥漫性星系;扩展结构,例如流;和接近明亮来源的对象。此外,我们开发了一种自动化方法来优化上述工具的参数。 我们根据精确,召回和正确识别的来源领域的新措施提出了四个不同的客观分割质量度量。贝叶斯优化用于在模拟数据上找到四个工具中的每个工具中的每个工具中的最佳参数设置,以此为基础真相。训练后,对工具进行了类似的模拟数据测试,以提供性能基线。然后,我们定性地评估来自两个不同调查的真实天文图像的工具性能。 我们确定当忽略区域时,所有四个工具都能具有广泛相似的检测完整性,而只有Noisechisel和mtobjects才能找到微弱的物体郊区。在所有四种质量措施上,MTOBjects在所有测试中均产生最高分数,而Sextractor获得了最高的速度。没有工具具有足够的速度和准确性,可以非常适合以其当前形式进行大规模自动分割。

With the growth of the scale, depth, and resolution of astronomical imaging surveys, there is an increased need for highly accurate automated detection and extraction of astronomical sources from images. This also means there is a need for objective quality criteria, and automated methods to optimise parameter settings for these software tools. We present a comparison of several tools which have been developed to perform this task: namely SExtractor, ProFound, NoiseChisel, and MTObjects. In particular, we focus on evaluating performance in situations which present challenges for detection -- for example, faint and diffuse galaxies; extended structures, such as streams; and objects close to bright sources. Furthermore, we develop an automated method to optimise the parameters for the above tools. We present four different objective segmentation quality measures, based on precision, recall, and a new measure for the correctly identified area of sources. Bayesian optimisation is used to find optimal parameter settings for each of the four tools on simulated data, for which a ground truth is known. After training, the tools are tested on similar simulated data, to provide a performance baseline. We then qualitatively assess tool performance on real astronomical images from two different surveys. We determine that when area is disregarded, all four tools are capable of broadly similar levels of detection completeness, while only NoiseChisel and MTObjects are capable of locating the faint outskirts of objects. MTObjects produces the highest scores on all tests on all four quality measures, whilst SExtractor obtains the highest speeds. No tool has sufficient speed and accuracy to be well-suited to large-scale automated segmentation in its current form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源