论文标题

Argus:交互式先验分析

Argus: Interactive a priori Power Analysis

论文作者

Wang, Xiaoyi, Eiselmayer, Alexander, Mackay, Wendy E., Hornbæk, Kasper, Wacharamanotham, Chat

论文摘要

HCI研究人员在设计受控实验时面临的主要挑战是选择适当数量的参与者或样本量。先前的功率分析检查了多个参数之间的关系,包括与人参与者相关的复杂性,例如秩序和疲劳效应,以计算给定实验设计的统计能力。我们创建了Argus,该工具支持统计能力的交互式探索:研究人员指定实验设计方案,具有不同的混杂和效果大小。然后,阿格斯(Argus)模拟数据并在这些情况下可视化统计能力,这使研究人员可以交互权衡各种权衡取舍,并就样本量做出明智的决定。我们描述了Argus的设计和实施,一种设计可视化实验的用法场景以及一项思维的研究。

A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A prior power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源