论文标题

纳米构造的单层WSE $ _2 $的辐射,用于站点控制的单光子排放高达150 K

Irradiation of Nanostrained Monolayer WSe$_2$ for Site-Controlled Single-Photon Emission up to 150 K

论文作者

Parto, Kamyar, Banerjee, Kaustav, Moody, Galan

论文摘要

类似量子点的WSE $ _2 $单光子发射器已成为一个有前途的平台,用于未来片上可伸缩的量子光源,具有与现有技术相比的独特优势,尤其是特定于网站的工程的潜力。但是,这些来源功能所需的低温温度已成为其全部潜力的抑制剂。现有的应变工程方法在延长工作温度时面临着根本的挑战,同时保持发射极的制造产量和纯度。在这项工作中,我们展示了一种新颖的方法,该方法在原子上薄的WSE $ _2 $中设计特定地点的单光子发射器,利用纳米级压力和通过电子束辐照的独立和同时的应变工程,并通过纳米级压力进行独立和同时的应变工程。这些发射器中的许多表现出激子 - 贝氏质发射,纯度以上的纯度超过95%,并且工作温度延伸至150 K,这是van der waals半导体单光子发射器中最高观察到的,而无需增强percell。这种方法以及可能的等离子或光学微腔整合,有可能进一步实现未来可扩展,室温和高质量的Van der wa waals量子光源。

Quantum-dot-like WSe$_2$ single-photon emitters have become a promising platform for future on-chip scalable quantum light sources with unique advantages over existing technologies, notably the potential for site-specific engineering. However, the required cryogenic temperatures for the functionality of these sources have been an inhibitor of their full potential. Existing strain engineering methods face fundamental challenges in extending the working temperature while maintaining the emitter's fabrication yield and purity. In this work, we demonstrate a novel method of designing site-specific single-photon emitters in atomically thin WSe$_2$ with near-unity yield utilizing independent and simultaneous strain engineering via nanoscale stressors and defect engineering via electron-beam irradiation. Many of these emitters exhibit exciton-biexciton cascaded emission, purities above 95%, and working temperatures extending up to 150 K, which is the highest observed in van der Waals semiconductor single-photon emitters without Purcell enhancement. This methodology, coupled with possible plasmonic or optical micro-cavity integration, potentially furthers the realization of future scalable, room-temperature, and high-quality van der Waals quantum light sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源