论文标题

3D断层扫描数据的微观结构表征和分割的物理模型

A Physical Model for Microstructural Characterization and Segmentation of 3D Tomography Data

论文作者

Brenne, Elise Otterlei, Dahl, Vedrana Andersen, Jørgensen, Peter Stanley

论文摘要

我们提出了一种表征来自体积数据集的材料的微观结构的新方法,例如计算机断层扫描(CT)的3D图像数据。该方法基于一种用于体素强度和梯度幅度分布的新统计模型,并结合了有关成像过程物理性质的先验知识。它允许直接量化成像样品的参数,例如音量分数,接口区域和材料密度以及与成像过程相关的参数,例如图像分辨率和噪声水平。 从3D图像进行表征的现有方法通常需要对数据进行分割,该过程根据其代表哪种材料的最佳猜测标记每个体素的过程。通过我们的方法,避免了与图像处理管道的这一部分相关的错误和计算成本的规避。取而代之的是,材料参数是通过将其与模型参数的已知关系量化的,该参数直接拟合到原始的,未分段的数据。我们提出了一个自动拟合程序,该程序可提供可再现的结果而没有人类偏见,并可以自动分析大型断层图。 对于更复杂的结构分析问题,分割仍然是有益的。我们表明,我们的模型可以用作现有概率方法的输入,从而提供了基于成像样品物理的分割。由于我们的模型是由于成像技术固有的模糊而解释的混合体素体,因此我们减少了其他方法在材料之间的接口上可能产生的错误。

We present a novel method for characterizing the microstructure of a material from volumetric datasets such as 3D image data from computed tomography (CT). The method is based on a new statistical model for the distribution of voxel intensities and gradient magnitudes, incorporating prior knowledge about the physical nature of the imaging process. It allows for direct quantification of parameters of the imaged sample like volume fractions, interface areas and material density, and parameters related to the imaging process like image resolution and noise levels. Existing methods for characterization from 3D images often require segmentation of the data, a procedure where each voxel is labeled according to the best guess of which material it represents. Through our approach, the segmentation step is circumvented so that errors and computational costs related to this part of the image processing pipeline are avoided. Instead, the material parameters are quantified through their known relation to parameters of our model which is fitted directly to the raw, unsegmented data. We present an automated model fitting procedure that gives reproducible results without human bias and enables automatic analysis of large sets of tomograms. For more complex structure analysis questions, a segmentation is still beneficial. We show that our model can be used as input to existing probabilistic methods, providing a segmentation that is based on the physics of the imaged sample. Because our model accounts for mixed-material voxels stemming from blurring inherent to the imaging technique, we reduce the errors that other methods can create at interfaces between materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源