论文标题

视觉分析框架,用于解释和诊断转移学习过程

A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes

论文作者

Ma, Yuxin, Fan, Arlen, He, Jingrui, Nelakurthi, Arun Reddy, Maciejewski, Ross

论文摘要

许多统计学习模型认为,培训数据和未来未标记的数据是从相同分布中绘制的。但是,在实际情况下,难以实现此假设,并在重新利用类似应用程序域的现有标签中造成了障碍。转移学习旨在通过建模域之间的关系来放松这一假设,并且通常在深度学习应用中应用,以减少对标记的数据和培训时间的需求。尽管最近在使用视觉分析工具探索深度学习模型方面取得了进步,但很少的工作探索了解释和诊断深度学习模型之间知识转移过程的问题。在本文中,我们为训练深层神经网络时的多层探索提供了视觉分析框架。我们的框架建立了一种多相关的设计,以解释在训练深层神经网络时,如何将现有模型中的知识转移到新的学习任务中。基于全面的要求和任务分析,我们采用了描述性可视化,并通过绩效指标以及对统计,实例,功能和模型结构水平的模型行为进行详细检查。我们通过通过微调Alexnets来说明分析师如何利用我们的框架,通过两项有关图像分类的案例研究来展示我们的框架。

Many statistical learning models hold an assumption that the training data and the future unlabeled data are drawn from the same distribution. However, this assumption is difficult to fulfill in real-world scenarios and creates barriers in reusing existing labels from similar application domains. Transfer Learning is intended to relax this assumption by modeling relationships between domains, and is often applied in deep learning applications to reduce the demand for labeled data and training time. Despite recent advances in exploring deep learning models with visual analytics tools, little work has explored the issue of explaining and diagnosing the knowledge transfer process between deep learning models. In this paper, we present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks. Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks. Based on a comprehensive requirement and task analysis, we employ descriptive visualization with performance measures and detailed inspections of model behaviors from the statistical, instance, feature, and model structure levels. We demonstrate our framework through two case studies on image classification by fine-tuning AlexNets to illustrate how analysts can utilize our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源