论文标题

有关在软件工程研究中使用深度学习的系统文献综述

A Systematic Literature Review on the Use of Deep Learning in Software Engineering Research

论文作者

Watson, Cody, Cooper, Nathan, Palacio, David Nader, Moran, Kevin, Poshyvanyk, Denys

论文摘要

软件工程(SE)研究人员为自动化开发任务所采用的一组越来越受欢迎的技术是植根于深度学习概念(DL)的技术。这种技术的普及主要源于其自动化功能工程功能,这有助于对软件进行建模。但是,由于采用了DL技术的快速速度,因此很难提炼当前研究格局的当前成功,失败和机会。为了清楚这个横切工作领域,从现代成立到现在,本文在SE&DL的交集中介绍了对研究的系统文献回顾。该评论的作品出现在最突出的SE和DL会议,期刊和期刊以及跨越23个独特的SE任务中的128篇论文中。我们将分析围绕学习的组成部分,这是一组管理机器学习技术(ML)在给定问题域中的原则,讨论了经过详细的工作的几个方面。我们分析的最终结果是研究路线图,两者都描述了用于SE研究的DL技术的基础,并突出了未来肥沃的探索领域。

An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this crosscutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 128 papers across 23 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and highlights likely areas of fertile exploration for the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源