论文标题
Sury和McLaughlin身份的组合化,统一方法中的一般线性复发
Combinatorialization of Sury and McLaughlin identities, general linear recurrences in a unified approach
论文作者
论文摘要
在本文中,我们提供了由于Sury和McLaughlin引起的一些最近身份的组合证明。我们表明,具有恒定系数的一般线性复发的解可以解释为矩阵的决定因素。另外,我们得出了斐波那契和卢卡斯数的决定性表达。我们以纯粹的组合方式证明了斐波那契和卢卡斯数字的双层公式,在这样做的过程中,我们发现了一种确定性身份,我们认为这是新的。
In this article we provide with combinatorial proofs of some recent identities due to Sury and McLaughlin. We show that, the solution of a general linear recurrence with constant coefficients can be interpreted as a determinant of a matrix. Also, we derive a determinantal expression of Fibonacci and Lucas numbers. We prove Binets formula for Fibonacci and Lucas numbers in a purely combinatorial way and in course of doing so, we find a determinantal identity, which we think to be new.