论文标题
关于Dehn Twists及其表示的绘制班级组的映射群体商
On mapping class group quotients by powers of Dehn twists and their representations
论文作者
论文摘要
本文的目的是调查有关Dehn Twist的权力绘制班级商人的一些已知结果,这些结果与其有限的维度表示有关,并提出了一些开放的问题。一个人可以构建它们的有限商,从用zariski致密图像的表示形式分成半岛谎言组。我们表明,在第2属中,斐波那酸TQFT表示实际上是琼斯代表的专业化。最终,我们解释了一种漫长而喜怒无常的方法,该方法提供了大量的映射班级表示。
The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.