论文标题
COVID-19的国家形象大流行:中国的案例研究
Country Image in COVID-19 Pandemic: A Case Study of China
论文作者
论文摘要
乡村形象对国际关系和经济发展具有深远的影响。在Covid-19的全球爆发中,各国及其人民表现出不同的反应,从而在外国公众中产生了多样化的图像。因此,在这项研究中,我们以中国为特定的典型情况,并通过基于方面的情感分析在大规模的Twitter数据集上进行研究。据我们所知,这是第一个以这种细粒度探索国家形象的研究。为了执行分析,我们首先构建一个具有方面情感注释的手动标记的Twitter数据集。之后,我们与伯特进行了基于方面的情感分析,以探索中国的形象。我们发现,在公众中,从非负面变为负面的总体情绪变化,并通过提及与意识形态相关的方面的越来越多,并减少了对非基于事实的方面的提及。对包括美国国会议员,英语媒体和社交机器人在内的不同群体的Twitter用户的进一步调查揭示了他们对中国态度的不同模式。这项研究对Covid-19-19大流行中中国不断变化的形象有了更深入的了解。我们的研究还表明,如何在社会科学研究中应用基于方面的情感分析以提供宝贵的见解。
Country image has a profound influence on international relations and economic development. In the worldwide outbreak of COVID-19, countries and their people display different reactions, resulting in diverse perceived images among foreign public. Therefore, in this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset. To our knowledge, this is the first study to explore country image in such a fine-grained way. To perform the analysis, we first build a manually-labeled Twitter dataset with aspect-level sentiment annotations. Afterward, we conduct the aspect-based sentiment analysis with BERT to explore the image of China. We discover an overall sentiment change from non-negative to negative in the general public, and explain it with the increasing mentions of negative ideology-related aspects and decreasing mentions of non-negative fact-based aspects. Further investigations into different groups of Twitter users, including U.S. Congress members, English media, and social bots, reveal different patterns in their attitudes toward China. This study provides a deeper understanding of the changing image of China in COVID-19 pandemic. Our research also demonstrates how aspect-based sentiment analysis can be applied in social science researches to deliver valuable insights.