论文标题
气阻力和行星迁移对卵石积聚的同时影响
Concurrent effects of gas drag and planet migration on pebble accretion
论文作者
论文摘要
我们研究了使用Rossbi代码进行的2D两流体模拟,研究了迁移行星($ 10 <m_p <20 $地球质量)对辐射盘中卵石动力学的影响。迁移行星诱导的波和在气体上拖动后反应的波的合并作用会产生卵石的通量的复杂演化。波浪激发了碎石流动,充当尘埃陷阱,并积聚鹅卵石。由于拖拉反应,开尔文 - 霍尔姆尔兹不稳定性会发展出来,产生含几种地球固体质量的湍流灰尘环,可能会形成行星。地球越庞大,灰尘戒指的发展就越快。在与行星迁移的竞争中,此过程触发了几个灰尘环,径向分离缩放为$ 1/m_p $。我们发现了$ 13 $地球群众的过渡。在此下面,卵石停在地球轨道的内侧,但卵石积聚在地球上的持续。在此之上,在尘埃环区域中拖动后反应会使压力曲线平移,而行星迁移,这限制了卵石积聚的进一步生长。这个新的{\ it卵石隔离质量}大约比文献中经常报道的要素低2倍。这减少了超级地球行星的整体地层时间尺度,同时又偏向于磁盘耗散后的生存时间,因为进一步的积聚被扼杀了。最后,我们的结果支持通过鹅卵石和行星吸收的木星形成的混合模型。
We study the effect of a migrating planet ($10<M_p<20$ Earth mass) on the dynamics of pebbles in a radiative disk using 2D two-fluid simulations carried out with the RoSSBi code. The combined action of the waves induced by the migrating planet and drag back-reaction on the gas produces a complex evolution of the flux of pebbles. The waves excite zonal flows which act as dust traps, and accumulate pebbles. Owing to drag back-reaction, a Kelvin-Helmholtz instability develops, generating turbulent dust rings containing several Earth masses of solids, where planetesimal formation is likely. The more massive the planet, the faster the dust rings develop. In competition with planet migration, this process triggers several dust rings, with a radial separation scaling as $1/M_p$. We discover a transition around $13$ Earth masses. Below that, pebbles are stopped at the inner side of the planet's orbit, but pebble accretion on the planet is sustained. Above that, drag back-reaction in the dust ring region flattens the pressure profile while the planet migrates, which limits further growth by pebble accretion. This new {\it pebble isolation mass} is about a factor of 2 lower than often reported in the literature. This reduces the overall formation timescale of Super-Earth planets, while favoring their survival after the disk's dissipation because further accretion is stifled. Finally, our results support an hybrid model for the formation of Jupiter via both pebbles and planetesimals accretion.