论文标题
具有强大潜力和非局部术语的准椭圆形不平等现象
Quasilinear elliptic inequalities with Hardy potential and nonlocal terms
论文作者
论文摘要
我们研究quasilinear椭圆形不平等$$-Δ_Mu - \fracμ{| x |^m} u^{m -1} \ geq(i_α*u^u^p)u^q \ q \ quad \ quad \ mbox {in} μ\ in \ mathbb {r} $,$ m> 1 $和$i_α$是订单$α\ in(0,n)$的riesz潜力。我们为存在阳性解决方案获得了必要和充分的条件。
We study the quasilinear elliptic inequality $$ -Δ_m u - \fracμ{|x|^m}u^{m-1} \geq (I_α*u^p)u^q \quad\mbox{ in }\mathbb{R}^N\setminus \overline B_1, N\geq 1, $$ where $p>0$, $q, μ\in \mathbb{R}$, $m>1$ and $I_α$ is the Riesz potential of order $α\in (0,N)$. We obtain necessary and sufficient conditions for the existence of positive solutions.