论文标题

小弗洛德数字的开尔文唤醒图案

Kelvin wake pattern at small Froude numbers

论文作者

Pethiyagoda, Ravindra, Moroney, Timothy J., Lustri, Christopher J., McCue, Scott W.

论文摘要

众所周知,在稳定移动的干扰后面形成的表面重力波模式包含不同的波浪和横向波,包含在独特的V形唤醒中。在本文中,我们关注的是对缓慢移动干扰(小的弗洛德数字)极限的理论研究,为此,唤醒由横波支配。我们考虑三种配置:流过一个淹没的源奇异性,淹没的双线峰以及施加到表面的压力分布。我们处理这些问题的线性化版本,并使用固定相和指数渐近学的方法来证明明显的唤醒角度小于经典开尔文角,并随着Froude数量的降低而量化明显的唤醒角度下降。这些结果补充了许多最近的研究,以进行足够快速的障碍(大弗洛德数字),在这些研究中,明显的唤醒角也比经典的开尔文角也小。除了对唤醒角度散发光线外,我们还研究了在各种限制下的三种配置的完全非线性问题,以证明小弗洛德数字上开尔文唤醒图案的独特而有趣的特征。

The surface gravity wave pattern that forms behind a steadily moving disturbance is well known to comprise divergent waves and transverse waves, contained within a distinctive V-shaped wake. In this paper, we are concerned with a theoretical study of the limit of a slow-moving disturbance (small Froude numbers), for which the wake is dominated by transverse waves. We consider three configurations: flow past a submerged source singularity, a submerged doublet, and a pressure distribution applied to the surface. We treat the linearised version of these problems and use the method of stationary phase and exponential asymptotics to demonstrate that the apparent wake angle is less than the classical Kelvin angle and to quantify the decrease in apparent wake angle as the Froude number decreases. These results complement a number of recent studies for sufficiently fast-moving disturbances (large Froude numbers) where the apparent wake angle has been also less than the classical Kelvin angle. As well as shedding light on the wake angle, we also study the fully nonlinear problems for our three configurations under various limits to demonstrate the unique and interesting features of Kelvin wake patterns at small Froude numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源