论文标题

量化派生的映射堆栈

Quantizing Derived Mapping Stacks

论文作者

Grady, Ryan E.

论文摘要

在这篇综述中,我们讨论了通过量化$σ$模型获得的几种拓扑和几何不变。更确切地说,我们不量化整个字段的映射堆栈,而是只量化低能场的替代。理论上可以介绍这种替代的理论,并将问题简化为扰动仪表理论。在整个过程中,我们广泛使用了派生的符号几何形状以及Costello和Gwilliam的BV形式主义。最后,我们将AJ的猜想构想为结理论,是量化字符堆栈的问题。

In this review we discuss several topological and geometric invariants obtained by quantizing $σ$-models. More precisely, we don't quantize the entire mapping stack of fields, but rather only the substack of low energy fields. The theory restricted to this substack can be presented Lie theoretically and the problem is reduced to perturbative gauge theory. Throughout, we make extensive use of derived symplectic geometry and the BV formalism of Costello and Gwilliam. Finally, we frame the AJ Conjecture in knot theory as a question of quantizing character stacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源