论文标题

METIS:基于多代理的危机模拟系统

Metis: Multi-Agent Based Crisis Simulation System

论文作者

Sidiropoulos, George, Kiourt, Chairi, Moussiades, Lefteris

论文摘要

随着计算技术(图形处理单元 - GPU)和机器学习的出现,危机管理的人群模拟研究领域蓬勃发展。除了这些年来,旨在增加人群模拟的现实主义的新技术和方法,还开发了几种危机模拟系统/工具,但是大多数危机模拟系统/工具都集中在特殊情况下,而没有为用户提供根据他们的需求调整它们的能力。在这些方向上,在本文中,我们引入了一种新型的基于多代理的危机模拟系统,用于室内病例。该系统的主要优点是它的易用性功能,重点关注非专家用户(几乎没有编程技能的用户)可以利用其功能A,根据他们的需求(案例研究)调整整个环境,并通过一些最受欢迎的增强计划学习算法来建立疏散计划实验。简而言之,该系统的特征专注于动态环境设计和危机管理,与流行的强化学习库的互连,具有不同特征的代理(行为),火灾传播参数化,基于流行的游戏引擎的现实物理学,GPU加速剂的训练和模拟最终条件。一项案例研究利用了流行的强化学习算法,用于培训代理,介绍了拟议系统的动态和能力,并以系统的亮点和一些未来的方向结束了拟议系统的动力和能力。

With the advent of the computational technologies (Graphics Processing Units - GPUs) and Machine Learning, the research domain of crowd simulation for crisis management has flourished. Along with the new techniques and methodologies that have been proposed all those years, aiming to increase the realism of crowd simulation, several crisis simulation systems/tools have been developed, but most of them focus on special cases without providing users the ability to adapt them based on their needs. Towards these directions, in this paper, we introduce a novel multi-agent-based crisis simulation system for indoor cases. The main advantage of the system is its ease of use feature, focusing on non-expert users (users with little to no programming skills) that can exploit its capabilities a, adapt the entire environment based on their needs (Case studies) and set up building evacuation planning experiments with some of the most popular Reinforcement Learning algorithms. Simply put, the system's features focus on dynamic environment design and crisis management, interconnection with popular Reinforcement Learning libraries, agents with different characteristics (behaviors), fire propagation parameterization, realistic physics based on popular game engine, GPU-accelerated agents training and simulation end conditions. A case study exploiting a popular reinforcement learning algorithm, for training of the agents, presents the dynamics and the capabilities of the proposed systems and the paper is concluded with the highlights of the system and some future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源