论文标题
不确定性启发了RGB-D显着性检测
Uncertainty Inspired RGB-D Saliency Detection
论文作者
论文摘要
我们提出了第一个随机框架,通过从数据标记过程中学习来利用不确定性来实现RGB-D显着性检测。现有的RGB-D显着性检测模型通过在确定性学习管道后预测单个显着性图,将此任务视为点估计问题。我们认为,确定性解决方案相对较差。受显着数据标记过程的启发,我们提出了一种生成架构,以实现概率RGB-D显着检测,该检测利用潜在变量来对标记变化进行建模。我们的框架包括两个主要模型:1)生成器模型,该模型将输入图像和潜在变量映射到随机显着性预测,以及2)推理模型,该模型通过从真实或近似后验分布中对其进行采样,从而逐渐更新潜在变量。发电机模型是一个编码器的显着性网络。为了推断潜在变量,我们介绍了两种不同的解决方案:i)带有额外编码器的条件变异自动编码器,以近似潜在变量的后验分布; ii)一种交替的后传播技术,该技术直接从真实的后验分布中直接采样了潜在变量。六个具有挑战性的RGB-D基准数据集的定性和定量结果表明,我们的方法在学习显着图的分布方面的出色表现。源代码可通过我们的项目页面公开获得:https://github.com/jingzhang617/ucnet。
We propose the first stochastic framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection models treat this task as a point estimation problem by predicting a single saliency map following a deterministic learning pipeline. We argue that, however, the deterministic solution is relatively ill-posed. Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection which utilizes a latent variable to model the labeling variations. Our framework includes two main models: 1) a generator model, which maps the input image and latent variable to stochastic saliency prediction, and 2) an inference model, which gradually updates the latent variable by sampling it from the true or approximate posterior distribution. The generator model is an encoder-decoder saliency network. To infer the latent variable, we introduce two different solutions: i) a Conditional Variational Auto-encoder with an extra encoder to approximate the posterior distribution of the latent variable; and ii) an Alternating Back-Propagation technique, which directly samples the latent variable from the true posterior distribution. Qualitative and quantitative results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps. The source code is publicly available via our project page: https://github.com/JingZhang617/UCNet.