论文标题

风险评估工具中的公平性:实现反事实均衡赔率的后处理

Fairness in Risk Assessment Instruments: Post-Processing to Achieve Counterfactual Equalized Odds

论文作者

Mishler, Alan, Kennedy, Edward H., Chouldechova, Alexandra

论文摘要

在诸如刑事司法,医学和社会福利等领域,决策者越来越多地获得算法风险评估工具(RAIS)。 RAI估计诸如累犯或忽视儿童等不利结果的风险,有可能告知高风险的决定,例如是否释放被告保释或开始儿童福利调查。重要的是要确保RAI公平,以便公平地分配此类决策的收益和危害。 最广泛使用的算法公平标准是根据可观察到的结果提出的,例如一个人是否真正累进,但是当应用于RAI时,这些标准误导了。由于RAI旨在告知可以降低风险的干预措施,因此预测本身会影响下游结果。最近的工作认为,RAI的公平标准应该利用潜在的结果,即在没有适当干预的情况下会发生的结果。但是,目前尚无符合此类公平标准的方法。 在本文中,我们针对一个这样的标准,反事实均衡的几率。我们开发了一个后处理的预测变量,该预测因子是通过双重稳健估计器估算的,将以前的后处理方法扩展到反事实设置。我们还提供了对任意固定后处理预测因子的风险和公平性能的双重稳定估计值。我们的预测因子以快速速率收敛到最佳公平预测变量。我们说明了我们方法的属性,并表明它在模拟和真实数据上均表现良好。

In domains such as criminal justice, medicine, and social welfare, decision makers increasingly have access to algorithmic Risk Assessment Instruments (RAIs). RAIs estimate the risk of an adverse outcome such as recidivism or child neglect, potentially informing high-stakes decisions such as whether to release a defendant on bail or initiate a child welfare investigation. It is important to ensure that RAIs are fair, so that the benefits and harms of such decisions are equitably distributed. The most widely used algorithmic fairness criteria are formulated with respect to observable outcomes, such as whether a person actually recidivates, but these criteria are misleading when applied to RAIs. Since RAIs are intended to inform interventions that can reduce risk, the prediction itself affects the downstream outcome. Recent work has argued that fairness criteria for RAIs should instead utilize potential outcomes, i.e. the outcomes that would occur in the absence of an appropriate intervention. However, no methods currently exist to satisfy such fairness criteria. In this paper, we target one such criterion, counterfactual equalized odds. We develop a post-processed predictor that is estimated via doubly robust estimators, extending and adapting previous post-processing approaches to the counterfactual setting. We also provide doubly robust estimators of the risk and fairness properties of arbitrary fixed post-processed predictors. Our predictor converges to an optimal fair predictor at fast rates. We illustrate properties of our method and show that it performs well on both simulated and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源