论文标题

使用合成数据优化高维模拟模型

Optimization of High-dimensional Simulation Models Using Synthetic Data

论文作者

Bartz-Beielstein, Thomas, Bartz, Eva, Rehbach, Frederik, Mersmann, Olaf

论文摘要

仿真模型是用于资源使用估算和容量计划的宝贵工具。在许多情况下,可靠的数据不可用。我们介绍了BUB模拟器,该模拟器仅需要用于模拟参数的合理间隔的规范。通过执行基于替代模型的优化,可以确定改进的仿真模型参数。此外,可以进行详细的统计分析,从而深入了解最重要的模型参数及其相互作用。该信息可用于筛选应进一步研究的参数。为了体现我们的方法,模拟和优化了医院的能力和资源计划任务。该研究明确涵盖了由19009大流行造成的困难。可以证明,即使只有有限的现实数据可用,也可以有益地使用Bub Simulator来考虑最坏情况和最佳情况。可以通过多种方式扩展BUB模拟器,例如,通过添加更多资源(个人保护设备,员工,药品)或指定几个同类(基于年龄,健康状况等)。 关键字:综合数据,离散事件模拟,基于替代模型的优化,COVID-19,机器学习,人工智能,医院资源计划,预测工具,容量计划。

Simulation models are valuable tools for resource usage estimation and capacity planning. In many situations, reliable data is not available. We introduce the BuB simulator, which requires only the specification of plausible intervals for the simulation parameters. By performing a surrogate-model based optimization, improved simulation model parameters can be determined. Furthermore, a detailed statistical analysis can be performed, which allows deep insights into the most important model parameters and their interactions. This information can be used to screen the parameters that should be further investigated. To exemplify our approach, a capacity and resource planning task for a hospital was simulated and optimized. The study explicitly covers difficulties caused by the COVID-19 pandemic. It can be shown, that even if only limited real-world data is available, the BuB simulator can be beneficially used to consider worst- and best-case scenarios. The BuB simulator can be extended in many ways, e.g., by adding further resources (personal protection equipment, staff, pharmaceuticals) or by specifying several cohorts (based on age, health status, etc.). Keywords: Synthetic data, discrete-event simulation, surrogate-model-based optimization, COVID-19, machine learning, artificial intelligence, hospital resource planning, prediction tool, capacity planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源