论文标题

冲击波岩石疗法中的三模式空化映射

Tri-modality Cavitation Mapping in Shock Wave Lithotripsy

论文作者

Li, Mucong, Sankin, Georgy, Vu, Tri, Yao, Junjie, Zhong, Pei

论文摘要

冲击波碎石疗法(SWL)已被广泛用于肾结石的非侵入性治疗。空化在石材碎片化中起着重要的作用,但在SWL期间也可能导致肾脏损伤。因此,确定空化活动的时空分布至关重要,以最大程度地减少组织损伤,以最大程度地提高石材碎裂。传统的空化检测方法包括高速光学成像,主动空化映射(ACM)和被动空化图(PCM)。尽管这三种方法中的每种都提供了有关气泡动力学的独特信息,但PCM在生物组织中具有最实际的应用。为了想象气泡崩溃的动力学,我们先前开发了一种滑动窗口PCM(SW-PCM)方法,以鉴定每个气泡塌陷,并具有高时空和空间分辨率。为了进一步验证和优化SW-PCM方法,在这项工作中,我们开发了三模式空化成像,其中包括3D高速光学成像,ACM和PCM无缝集成在单个系统中。使用三模式系统,我们在自由和狭窄的空间以及冲击波引起的空化簇中成像和分析了激光诱导的单个空化气泡。总的来说,我们的结果表明,SW-PCM方法的可靠性和时空精度很高,这为SWL大型动物和人类的未来体内应用铺平了道路。

Shock wave lithotripsy (SWL) has been widely used for non-invasive treatment of kidney stones. Cavitation plays an important role in stone fragmentation, yet may also contribute to renal injury during SWL. It is therefore crucial to determine the spatiotemporal distributions of cavitation activities to maximize stone fragmentation while minimizing tissue injury. Traditional cavitation detection methods include high-speed optical imaging, active cavitation mapping (ACM), and passive cavitation mapping (PCM). While each of the three methods provides unique information about the dynamics of the bubbles, PCM has most practical applications in biological tissues. To image the dynamics of cavitation bubble collapse, we previously developed a sliding-window PCM (SW-PCM) method to identify each bubble collapse with high temporal and spatial resolution. To further validate and optimize the SW-PCM method, in this work, we have developed tri-modality cavitation imaging that includes 3D high-speed optical imaging, ACM, and PCM seamlessly integrated in a single system. Using the tri-modality system, we imaged and analyzed laser-induced single cavitation bubbles in both free and constricted space and shockwave-induced cavitation clusters. Collectively, our results have demonstrated the high reliability and spatial-temporal accuracy of the SW-PCM approach, which paves the way for future in vivo applications on large animals and humans in SWL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源